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Overview

e Introduction: Audio Effect

e Chapterl: Related Work

e Chapter Il: HyperGRU for Neural AFx Modeling (Proposed Model)
e Chapter Ill: Future Work



e Formulation

X: input signal, M channel

y: output signal, N channel
t’ Cg) Cy: gloabl condition

c,: local condition

y =f(x, C

e Why Audio Effect Modeling
o Analog Emulation
m condition: knob values
o Spatial/lmmersive Audio (Virtual Reality)
m condition: coordinates
e \Why Neural Network
o Quality
o Differentiability: diverse application
o Generalizability



Overview- Audio Effect

Introduction



Audio Effects

Midi =) [ Instrument ] =)

M Channel N Channel

e Format: VSTi i
e Application

! o Sampler

i o Sample library !
o Synthesizer !
| o Wavetable
1 O :

__________________________________________

e Format: VST ;

e Application :
i o Equalizer (EQ) !
o Distortion |
5 o Reverberation i
! o  Compressor/Limiter
! o !

X: input signal, M channel
y: output signal, N channel
c_: gloabl condition

c,: local condition



Audio Effects

Github: juandaqilc/Audio-Effects
Common audio effects list

O O O O O O O O

EQ - Parametric EQ, Graphic EQ...

Dynamics - Compressor, Limiter, Expander, De-esser
Distortion - Overdrive pedal, Amp, Saturator

Reverb - Chamber, Hall, Room, Plate...

Delay - Spring delay, Tape delay, Ping-pong delay...
Modulation - Flanger, Chorus, Phaser

Spatial - Stereo imager, Mid/Side processor

Others - Noise reduction, Pitch-correction...
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https://github.com/juandagilc/Audio-Effects

Related Work

Chapter |
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e Audio Effect Modeling
o Traditional DSP
o Neural Networks
o DDSP
e Condition in Neural Networks
o Concatenation
o FiLM
o HyperNetworks
e Intrinsic Problem of Neural Networks
o Aliasing
o Chaos
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Ch1:Related Work/Audio Effect Modeling

Traditional DSP

e Impulse Response (IR)
White-Box

o Characteristic function
o  Circuit analysis

e Black-Box
o  Wiener-Hammerstein (WH) models

e Hybrid Method

o  Build a guitar amplifier
e Discussion



Ch1:Related Work/Audio Effect Modeling

Traditional DSP: Impulse Response

e Assumption:

o Linear Time-Invariant (LTI) System
e Application

o  Guitar cabinet

o Room reverberation (RIR)
o Head Related Transfer Functions (HRTF)

Convolution
e Pros

o Fast and simple
e Cons

o Non-linear, time-variant, memory



Ch1:Related Work/Audio Effect Modeling/White-Box

Traditional DSP: Characteristic Curve

e \White-Box
e Signal Clipping
e \Waveshaping

~N
o
~N
o

Buffer Time: 0.004002




Ch1:Related Work/Audio Effect Modeling/White-Box

Example: Guitar Tone Stack

Traditional DSP: Circuit Analysis Vi I

| | (1-t)R1
C1
e \White-Box R4§ Vo
e Nodal Analysis tR1
o Rewrite the schematic into equations I I
e Dpros: Ge | R2
o Accurate
o User control LompoRone ot
® cons: - ¥ (1-m)R3
o Slow and infeasible for large circuit Rioosok |
: . R2 = 1M C3
o Re-design everytime R3 = 25K %m R3
o Need to open up the hardware
o not for all modules -

Figure 1: Tone stack circuit with component values.

(DAfx’06) DISCRETIZATION OF THE ’59 FENDER BASSMAN TONE STACK, David T. Yeh



Ch1:Related Work/Audio Effect Modeling/White-Box

bz = Im(C1C2C3R1R2R3 + C1C2C3R2R3Ry)

Traditional DSP: Circuit Analysis B Y B by

+ 7'II(C]CQC'3RlR§ + 0102C5R§R4)
+ tC1C2C3R1R3Rs — tmC1C2C3R1R3 Ry

® How Waves’ Modeling Captures Analog Magic in a +tC1C2C3 R  Ra Ry,
Digital World from Waves’ Blog ao =1,
o “The first step in this kind of modeling is to open up the a1 = (C1R1 + C1R3 + C2R3 + C2Rs + C3Ry)
hardware » + mC35Rs + I(C1R2 + C2R>»),
o Ao = H'I(CI C:;RIR;; =3 C'QC;;R;;R_} + (_'IC{Ri
o component by component + CyC3R2) + Im(CyCsRaRs + C2CsRaRs)
o If there are too many components, simplification is —m?(C1C3R3 + C2CsR2) + I(C1C2 R Ry
necessary + ClCQRl Rz + C'IC;;R2R4 + CZC‘:«)RQR.;)
o “write mathematical equations that quantify how the +(CiCaRiRe +C:CaRiTly 4 CalCalls Ra
f " in MATLAB + C1C2R1R3 + C1C3R3 Ry + C2C3R3Ry),
components perform” in a3 = Im(C1C2Cs R1R2R3 + C1C2CsRaRsRa)
o “the modeling process takes months—in extreme cases — m2(C1C2CsR1R2 + C1C2C3 R2Ry)

+ m(C1C2C3R3Rs + C1C2C3R1 R}

I — C1C2C3R1R3R4) 4+ IC1C2C3R1 Ro Ry
o
ExpenSIVe + C1C2C3R1 R3 Ry,

even years—...”

(DAfx’06) DISCRETIZATION OF THE ’59 FENDER BASSMAN TONE STACK, David T. Yeh


https://www.waves.com/how-waves-modeling-captures-analog-magic
https://www.waves.com/how-waves-modeling-captures-analog-magic

Ch1:Related Work/Audio Effect Modeling/Black-Box

Traditional DSP: WH model

e Black-Box
e \Wiener-Hammerstein (WH) model
o Linear -> Non-linear -> Linear
e Loss Optimization
o Levenberg—Marquardt method
(gradient-based)

e Pros
o avoid exhaustive anaylsis
e Cons

o Configuration
o Performance
o No user control

Figure 5: Signal flow graph of the used nonlinear block.

(DAGA’18) Virtual Analog Modeling of Guitar Amplifiers with Wiener-Hammerstein Models, Felix Eichas



Ch1:Related Work/Audio Effect Modeling/Black-Box

Traditional DSP: WH model

x(n) O—[ Hy(2) H/H H>(z) ]—Oy(n)
e \Wiener-Hammerstein (WH) model

o Linear -> Non-linear -> Linear WH Model
o Gradient based optimization

e Similarity with Modern Neural Networks

guitar distortion effects. The TCN is a generalization of
convolutional networks applied to sequence modeling (dilated
1-dimensional convolution + nonlinearity). Interestingly, yet
maybe somewhat unsurprisingly, these models resemble Wiener-
Hammerstein models [26], a traditional statistical approach to

From micro-tcn v1 paper Micro-TCN Block

(AES’22) Efficient neural networks for real-time modeling of analog dynamic range compression, Christian J.


https://arxiv.org/pdf/2102.06200v1.pdf

Ch1:Related Work/Audio Effect Modeling

Traditional DSP: Hybrid Method

e How to build a guitar amplifier?

Input Gains: Degree of distortion
Tone Stack: Equalization
Output Gain: Volume

Cabinet




Ch1:Related Work/Audio Effect Modeling

Traditional DSP: Hybrid Method

e How to build a guitar amplifier?

Input Gain Amplifier Tone Stack Cabinet Output Gain

HM Model, or . .
Scalar Characteristic Curve Circuit Analysis Impulse Response Scalar

Signal

Flow



Ch1:Related Work/Audio Effect Modeling

Traditional DSP: Discussion

e Other Methods
o Voletrra Serires [1] (Adopted by Acustica Audio)
o Wave Digital Filter (WDF) [2]
e Problems
o Based on certian assumptions, lack of generalizability
o Some methods are resource demanding and slow
o Manual analysis and handcrafted features are usually required
O

Quality

[1] (JAES’18) Identification of volterra models of tube audio devices using multiple-variance method
[2] (Icassp’06) Wave digital simulation of a vacuumtube amplifier


https://www.acustica-audio.com/store

Ch1:Related Work/Audio Effect Modeling

Neural Networks

e Researcher ® Architectures
o Marco A. Martinez Ramirez o TCNs
o  Christian J. Steinmetz o RNNs
o Vesa Valimaki o Others

m Professor@Aalto University
o Alexander Richard
m Research Scientist@Meta Reality Labs



Ch1:Related Work/Audio Effect Modeling/Neural Networks

Researcher: Marco A. Martinez Ramirez

e Experience
o PhD @QML Research Areas

© Intern @AdObe Research ~deep learning architectures for music and audio processing.

© ResearCher@Sony ~intelligent music production: automatic mixing and mastering.
([ ] | nfO ~audio effects and neural networks.

o Website ~DSP-informed machine learning.

o Google Scholoar
o Github



https://m-marco.com/
https://scholar.google.com.tw/citations?user=4kEODCAAAAAJ&hl=zh-TW&oi=sra
https://github.com/mchijmma

Ch1:Related Work/Audio Effect Modeling/Neural Networks

Researcher: Marco A. Martinez Ramirez

(Dafx’18) End-to-end Equalization with Convolutional Neural Networks

(lcassp’19) Modeling Nonlinear Audio Effects with End-to-end Deep Neural Networks
(Dafx’19) A General-Purpose Deep Learning Approach to Model Time-Varying Audio Effects
(

(

ApplSci’20) Deep Learning for Black-Box Modeling of Audio Effects
Icassp’20) Modeling Plate and Spring Reverberation Using A DSP-Informed Deep Neural Network

Adaptive Front-end Synthesis Back-end

--------------------------------------------------------------------------------------------------------------

E Output
i audio

| deConviD _E_> ¥

Input H

. audio ¥
DSP-informed » — comio [yl cowd

UNet 5

.............................................................................................................

Figure 1: Block diagram of the proposed model; adaptive front-end, Bi-LSTM and synthesis back-end.

(lcassp’21) Differentiable Signal Processing With Black-Box Audio Effects
(lcassp’22) Automatic DJ Transitions with Differentiable Audio Effects and Generative Adversarial Networks
(arXiv.2202) Removing Distortion Effects in Music Using Deep Neural Networks



http://dafx2018.web.ua.pt/papers/DAFx2018_paper_27.pdf
https://arxiv.org/pdf/1810.06603.pdf
https://arxiv.org/pdf/1905.06148.pdf
https://www.mdpi.com/2076-3417/10/2/638
https://ieeexplore.ieee.org/document/9053093
https://arxiv.org/pdf/2105.04752.pdf
https://arxiv.org/pdf/2110.06525.pdf
https://arxiv.org/pdf/2202.01664.pdf

Ch1:Related Work/Audio Effect Modeling/Neural Networks

Researcher: Christian J. Steinmetz

e Experience about

o PhD ML
@Q | am a PhD student working with Prof. Joshua D. Reiss within the Centre for Digital
@) |ntern @Adobe Resea rCh Music at Queen Mary University of London. | research applications of machine
learning in audio with a focus on differentiable signal processing. Currently, my
L |nf0 research revolves around high fidelity audio and music production, which involves
. enhancing audio, intelligent systems for audio engineering, as well as applications
o Website . : o
—_— of machine learning that augment and extend creativity.
© GOOCI'G SChOloar Previously, | was an intern at Adobe, Meta Al, Dolby, Bose, Tape It, and Cirrus Logic.
o Github

GitHub « Scholar « Twitter « YouTube

R o B



https://www.christiansteinmetz.com/
https://scholar.google.com.tw/citations?user=jSvSfIMAAAAJ&hl=zh-TW&oi=sra
https://github.com/csteinmetz1

Ch1:Related Work/Audio Effect Modeling/Neural Networks

Researcher: Christian J. Steinmetz

(arXiv.2010) Randomized Overdrive Neural Networks

(DMRN+15) auraloss: Audio-Focused Loss Functions in PyTorch

(Aes’21) pyloudnorm: A Simple yet Flexible Loudness Meter in Python

(lcassp’21)  Automatic Multitrack Mixing With A Differentiable Mixing Console Of Neural Audio Effects
(

(

(

NeurlPS’21) Steerable Discovery of Neural Audio Effects (ML4CD Workshop)
Aes’22) Efficient Neural Networks for Real-Time Modeling of Analog Dynamic Range Compression
Icassp’22)  Direct Design of Biquad Filter Cascades with Deep Learning by Sampling Random Polynomials

v

[ z € R?
TCN
3

. | 5
Auto Mixin : | B
¢ (e

[TT1¢cRP hn  TCN Block
e ~N MLP



https://arxiv.org/pdf/2010.04237.pdf
https://static1.squarespace.com/static/5554d97de4b0ee3b50a3ad52/t/5fb1e9031c7089551a30c2e4/1605495044128/DMRN15__auraloss__Audio_focused_loss_functions_in_PyTorch.pdf
https://www.eecs.qmul.ac.uk/~josh/documents/2021/21076.pdf
https://ieeexplore.ieee.org/abstract/document/9414364
https://arxiv.org/pdf/2112.02926.pdf
http://www.eecs.qmul.ac.uk/~josh/documents/2022/Steinmetz%20AES152.pdf
https://arxiv.org/pdf/2110.03691.pdf

Ch1:Related Work/Audio Effect Modeling/Neural Networks

Researcher: Vesa Valimaki

e Experience
o Professor@Aalto University

e Info

o Website

o Google Scholoar (~12000 citations)
e Industry

o Several alumni working at Nueral DSP



http://users.spa.aalto.fi/vpv/
https://scholar.google.com/citations?user=QpB0aVIAAAAJ&hl=en
https://neuraldsp.com/

Ch1:Related Work/Audio Effect Modeling/Neural Networks

Researcher: Vesa Valimaki

(
(
(
(
(
(
(
(

SMC’19)
Icassp’19)
Dafx’19)
ApplSci’20)
Icassp’20)
Dafx’20)
Dafx’21)
Dafx’'22)

Real-Time Modeling of Audio Distortion Circuits with Deep Learning

Deep Learning for Tube Amplifier Emulation
Real-Time Black-Box Modelling With Recurrent Neural Networks
Real-Time Guitar Amplifier Emulation with Deep Learning

Perceptual Loss Function for Neural Modeling of Audio System

Neural Modelling of Periodically Modulated Time-Varying Effects

Exposure bias and state matching in recurrent neural network virtual analog models
Virtual Analog Modeling of Distortion Circuits Using Neural Ordinary Differential Equations

3n]

L}
: ) ' D
Y
[}
RNN H o
' Connected
L
o J Previous Cell 4 - \ New Cel
State 1 h [n] 1 State
cn—1] } f_t—\ 'ocn)
e
] ; ]
4 N hln—1] 1 LSTM Unit v Rln)
Previous \ New Hidden
AF X Hidden State 1 } f 1 State
1 1
\ z[n] LFOl] |
- J ! !
Time Step 1 Time Step 1 Time Step

n—1 | n Von+l


https://acris.aalto.fi/ws/portalfiles/portal/34352788/ELEC_Damskagg_Real_time_modeling_SMC2019.pdf
https://arxiv.org/pdf/1811.00334.pdf
http://dafx.de/paper-archive/2019/DAFx2019_paper_43.pdf
https://www.mdpi.com/2076-3417/10/3/766/htm?ref=https://githubhelp.com
https://arxiv.org/pdf/1911.08922.pdf
https://dafx2020.mdw.ac.at/proceedings/papers/DAFx2020_paper_49.pdf
https://dafx2020.mdw.ac.at/proceedings/papers/DAFx20in21_paper_12.pdf
https://arxiv.org/pdf/2205.01897.pdf

Ch1:Related Work/Audio Effect Modeling/Neural Networks

Researcher: Alexander Richard

e Experience
o Research scientist@Meta Reality Labs
e Info

o Website
o Google Scholoar

Alexander Richard

Research Scientist at Meta Reality Labs Research, Pittsburgh



https://alexanderrichard.github.io/
https://scholar.google.de/citations?user=73DTbNAAAAAJ

Ch1:Related Work/Audio Effect Modeling/Neural Networks

Researcher: Alexander Richard

o (lcassp’21) Implicit Hrtf Modeling Using Temporal Convolutional Networks
(ICLR’21) Neural Synthesis of Binaural Speech from Mono Audio
e (lcassp’22) Deep Impulse Responses: Estimating and Parameterizing Filters with Deep Networks

1z
2N
<--"'-/.I' (x’y,z, R) x(t) Sound source 6-DoF: (X,y,Z,RS)

- ~ )’ 'lv = %"‘“ Listener 6-DoF: (0,0,0,l{l)

TCN L
q ) hleft(t) I,’ ,'I hright(t)
4 ) ] l'

. ll/ A 1

Binaural . ,' (0,0,0,R) y |
- J left . e ht g8 i
y(v) yrE (L) yet(t)  yUish(t)
(a) Traditional synthesis system (b) Proposed system


https://alexanderrichard.github.io/publications/pdf/richard_implicit_hrtf.pdf
https://openreview.net/pdf?id=uAX8q61EVRu
https://alexanderrichard.github.io/publications/pdf/richard_deep_impulse_responses.pdf

Ch1:Related Work/Audio Effect Modeling/Neural Networks

Architectures: TCNs

e Temporal Convolutional Networks
o An Empirical Evaluation of Generic Convolutional and Recurrent Networks for
Sequence Modeling (arXiv.1803)
e TCN =1D Causal Dilated Convolutions
e Family (with proper modification)

Jo Y1 2 Ir—297-197
o Wavenet Output
o TCN d=4
o Micro-TCN
Hidden
e Difference:
o Activation // =2
o Residual design Hidden
o Kernel design //V/ /W / d=1
'Input

Zo T1 Z2 TrT—2XT-12T


https://arxiv.org/pdf/1803.01271.pdf
https://arxiv.org/pdf/1803.01271.pdf
https://arxiv.org/pdf/1811.00334.pdf
https://arxiv.org/pdf/2102.06200.pdf

Ch1:Related Work/Audio Effect Modeling/Neural Networks

Architectures: TCNs

e Modification Buffer Length
o Causality - N
o Padding Policy
m Zeros

m cached samples
CNN

\— A /
Padding Length Buffer Length

l J
Receptive Field




Ch1:Related Work/Audio Effect Modeling/Neural Networks

Architectures: RNNs

Vesa Valimaki WaveNet

e (SMC19) Real-Time Modeling of Audio Distortion Circuits with Deep Learning I
e (lcassp’19) Deep Learning for Tube Amplifier Emulation I

(Dafx’19) Real-Time Black-Box Modelling With Recurrent Neural Networks

[ A\
e (ApplSci’20) Real-Time Guitar Amplifier Emulation with Deep Learning :
e (lcassp’20) Perceptual Loss Function for Neural Modeling of Audio System :
[ J |

|
ot 1

(Dafx’20) Neural Modelling of Periodically Modulated Time-Varying Effects
(Dafx’21) Exposure bias and state matching in recurrent neural network virtual analog models

o o mm mm — ———

'e (Dafx’22) Virtual Analog Modeling of Distortion Circuits Using Neural Ordinary Differential Equations



https://acris.aalto.fi/ws/portalfiles/portal/34352788/ELEC_Damskagg_Real_time_modeling_SMC2019.pdf
https://arxiv.org/pdf/1811.00334.pdf
http://dafx.de/paper-archive/2019/DAFx2019_paper_43.pdf
https://www.mdpi.com/2076-3417/10/3/766/htm?ref=https://githubhelp.com
https://arxiv.org/pdf/1911.08922.pdf
https://dafx2020.mdw.ac.at/proceedings/papers/DAFx2020_paper_49.pdf
https://dafx2020.mdw.ac.at/proceedings/papers/DAFx20in21_paper_12.pdf
https://arxiv.org/pdf/2205.01897.pdf

Ch1:Related Work/Audio Effect Modeling/Neural Networks

. ] *
Architectures: Others ( [ )( Controls
C Conv1D (STFT Init) ) \\
("Mag. Spectrogram” [ “Phase Spectrogram"]\ \\\
o UNet \4 T - 7\ FC y \\\ \\
o Marco A. Martinez Ramirez : AN
. ) Controls : Controls © \
o SignalTrain ) . (m o
: |
; [
' /
/,/ //
Y N/ .
e Not Good :( i O e e
7777 Transp. ConviD (ISTFT Init) ) //’
222 Output )
227777 Target )

————— Skip residual (additive)
----------- Skip filter (multiplicative)
* Copy

w4 “Lookback” omitted from output


https://arxiv.org/abs/1905.11928

Ch1:Related Work/Audio Effect Modeling

DDSP

e Differentiable IIR
e Differentiable Circuit
e Others



Ch1:Related Work/Audio Effect Modeling/DDSP

DDSP: Differentiable IIR

(Dafx’20) Neural Parametric Equalizer Matching Using Differentiable Biquads

(Dafx’20) Differentiable IR filters for machine learning applications

(Dafx’20) Optimization of cascaded parametric peak and shelving filters with backpropagation algorithm
(lcassp’21) Lightweight and interpretable neural modeling of an audio distortion effect using
hyperconditioned differentiable biquads

e (lcassp’22) Direct design of biguad filter cascades with deep learning by sampling random polynomials

Mot Paams wsp | eference [SEEI—
Coefficient 274 01708  Param. EQ (76T
e 0 oy WeveNet IS

Param. EQ = 210 0.0629
WaveNet 22960 | 0.0088 Anchor {77+

Table 2. Model comparisons. Fig. 3. MUSHRA scores with 95% confidence intervals.


https://dafx2020.mdw.ac.at/proceedings/papers/DAFx2020_paper_7.pdf
https://dafx2020.mdw.ac.at/proceedings/papers/DAFx2020_paper_52.pdf
https://dafx2020.mdw.ac.at/proceedings/papers/DAFx2020_paper_31.pdf
https://arxiv.org/pdf/2103.08709.pdf
https://arxiv.org/pdf/2103.08709.pdf
https://arxiv.org/pdf/2110.03691.pdf

Ch1:Related Work/Audio Effect Modeling/DDSP

DDSP: Differentiable Circuit

e (Dafx’20) Differentiable White-Box Virtual Analog Modeling

Value
ﬂl VR, Name (\)  Initial Learned G
Vin Il mid (lin) VR, 250k 312k 1.2498
Ra —oils VRa IMQ  616kQ  0.6164
C, VRs 25k 32k 1.2836
Il R4 56kQ 29kQ  0.9081
VR, C, 250pF  327.5pF 1.3102
low (log) Co 20 nF 17.3nF  0.8652
o Cc3 20nF  16.8nF  0.8408
. Vi w; 0.566  0.5036 —
| iy fl i ws 4400 42547 2
|| Py by ~3.380 —3.3351 -
. by 0.564  0.5016 =

Figure 4: Schematic for the FMV Tone Stack.
Table 1: Intial and learned values for the FMV Tone Stack Model.


https://dafx2020.mdw.ac.at/proceedings/papers/DAFx20in21_paper_39.pdf

Ch1:Related Work/Audio Effect Modeling/DDSP

DDSP: Others

e DTW (Dynamic Time Warping)
o (lclr'21) Neural Synthesis of Binaural Speech From Mono Audio

e Reverberation
o (arXiv.2105) Differentiable Artificial Reverberation



https://openreview.net/pdf?id=uAX8q61EVRu
https://arxiv.org/pdf/2105.13940.pdf

Chapter 1 - Related Work

e Audio Effect Modeling
o Traditional DSP
o Neural Networks
o DDSP
e Condition in Neural Networks
o Concatenation
o FiLM
o HyperNetworks
e Intrinsic Problem of Neural Networks
o Aliasing
o Chaos



Ch1:Related Work/Condition in Neural Networks

Concatenation

e Simplest
e Most Common

Input Condition

\ 4




Ch1:Related Work/Condition in Neural Networks

FILM

e (AAAI'18) FiLM: Visual Reasoning with a General Conditioning Layer
(NeurlPS’19) Temporal FiLM: Capturing Long-Range Sequence Dependencies with Feature-Wise Modulations

c Temporal Feature-Wise

[ \ Linear Modulation Layer l:] Block 1
Element-wise D Block 2
multiplication

Max Pooling BiLSTM
— N

ateach
position |+

L
< Block Weights

N . *
ivati F; i,c :
activation Unweighted Convolutional Weighted
o + A Activations Activations

Figure 2: A single FiLM layer for a CNN. The dot signifies Figure 1: The TFiILM layer combines the strengths of convolutional
and recurrent neural networks. Above: operation of the TFiLM

a Hadamard product. Various combinations of « and 3 can 1 !
modulate individual feature maps in a variety of ways. layer with T' = 8, C' = 2, B = 2, and a pooling factor of 2.


https://arxiv.org/pdf/1709.07871.pdf
https://arxiv.org/pdf/1909.06628.pdf

Ch1:Related Work/Condition in Neural Networks

FILM: AFX

e (lcassp’21) Differentiable Mixing Console (DMC)
o (AES22) micro-TCN

[T ¢ €RP hn  TCN Block
MLP z

[ Convid S
[ b
[ﬁiﬁ] [ BatchNorm ’ gi TCN Block
| : 5
{ Linear —>\ Fill_M ‘ gx 1 7 ToNBlock
PRelLU ED::ED]

Fig. 1: TCN [20] with a series of convolutional blocks
along with conditioning module (MLP) that
adapts the gain 7, and bias B, at each layer as a

Fig. 2. Block diagram of the TCN block. function of the control parameters ¢.


https://arxiv.org/pdf/2010.10291.pdf
https://arxiv.org/pdf/2102.06200.pdf

Ch1:Related Work/Condition in Neural Networks

HyperNetworks

e (ICLRM17) HyperNetworks

In this work, we consider an approach of using a small network (called a “hypernetwork") to generate the
weights for a larger network (called a main network).

Static: Linear-CNN Dynamic: RNN-RNN
b b
X W, > h, W, > h, WB; o % hes W )‘ h, ;



https://arxiv.org/pdf/1609.09106.pdf

Ch1:Related Work/Condition in Neural Networks

HyperNetworks

[ Concatenation ] | [ FiLM ] | [ HyperNetwork ]
| output
CTB output
output ! ! T

Linear CNN
Sy | | Linear |

| |

condition | input

condition input
condition input

[ HyperNetwork ] > [ FiLM ] . effectness of condition injection

[ HyperNetwork ] > [ Concatenation ] . efficiency in computation, avoid DSP issues




Ch1:Related Work/Condition in Neural Networks

HyperNetworks: AFx

o (lcassp’21) Implicit Hrtf Modeling Using Temporal Convolutional Networks
(ICLR’21) Neural Synthesis of Binaural Speech from Mono Audio

Model: HyperConv

0.011
o standard convolution
Q
Table 2: Ablation study. The components of the proposed binauralization network improve phas % 3 0.01 —— hyper convolution
and amplitude and thereby the overall loss in time-domain. — f.:
o0
raw waveform power spectrum phase spectrum g 3
3 = 0.009
(02 error x107) (¢2 error) (angular error) 3 4+
(a)  vanilla temporal CNN 0.254 0.061 0934 =5 o
(b) + warping 0.206 0.061 0.849 Q 0.008
(c) + hyper-conv 0.183 0.051 0.847
(d) + sine activation 0.167 0.048 0.807

0 20 40 60 80 100

epochs


https://alexanderrichard.github.io/publications/pdf/richard_implicit_hrtf.pdf
https://openreview.net/pdf?id=uAX8q61EVRu

Ch1:Related Work/Condition in Neural Networks

HyperNetworks: AFx

From Izotope

e (lcassp’21) Lightweight and interpretable neural modeling of an audio distortion effect using hyperconditioned

differentiable biguads

s € RCs cg_q1 € REs—1
c i (S —1) S—1 i
i stage s v Architecture:
HC, ] HCs—1 e HyperNet: MLP

| Ys-1 e Main Net: IIR

Fig. 2. Proposed neural network model architecture.


https://arxiv.org/pdf/2103.08709.pdf
https://arxiv.org/pdf/2103.08709.pdf

Ch1:Related Work/Condition in Neural Networks

HyperNetworks: DSP

From Adobe Research

o (WASPAA21) Auto-DSP: Learning to Optimize Acoustic Echo Cancellers, Automatic Echo Cancellation

e (arXiv.2204) Meta-AF: Meta-Learning for Adaptive Filters

uw&—»; wir] —74ym wl——> wiid >y

- Hnknown 5 | Optimized ‘ ’ Hand-derived Meta-learned
System i i

source: twitter

Architecture:

HyperNet: RNN
Main Net: Filters

Meta Learning: Learn new takss by
self-supervision:

system identification
echo cancellation
prediction
dereveberation
beamforming

noise cancellation


https://arxiv.org/pdf/2110.04284.pdf
https://arxiv.org/pdf/2204.11942.pdf
https://twitter.com/CasebeerJonah/status/1519116249028046852

Ch1:Related Work/Intrinsic Problem of Neural Networks

Chapter 1 - Related Work

e Audio Effect Modeling
o Traditional DSP
o Neural Networks
o DDSP
e Condition in Neural Networks
o Concatenation
o FiLM
o HyperNetworks
e Intrinsic Problem of Neural Networks
o Aliasing
o Chaos



Ch1:Related Work/Intrinsic Problem of Neural Networks
Aliasing

e (Cause
o Downsampling
o  Non-Linear function
e Solution
o Oversampling + LPF
o Anti-Aerivative

e Deep Learning

Audio
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30000

Hz

20000

10000




Ch1:Related Work/Intrinsic Problem of Neural Networks
Aliasing

e Cause 1: Dowsampling
o  Sampling theorem: Nyquist Frequency
e Cause 2: None-Linear Function

Hard Clipping Distortion w/ Aliasing
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https://github.com/jatinchowdhury18/ADAA
https://jatinchowdhury18.medium.com/practical-considerations-for-antiderivative-anti-aliasing-d5847167f510
https://ccrma.stanford.edu/~jatin/Notebooks/adaa.html

Ch1:Related Work/Intrinsic Problem of Neural Networks

Aliasing

e Solution 1: Oversampling + Low-Pass Filter (LPF)

X
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Ch1:Related Work/Intrinsic Problem of Neural Networks
Aliasing

e Solution 2: Anti-Derivative Anti-Aliasing (ADAA)

(Dafx’16) Reducing the Aliasing of Nonlinear Waveshaping Using Continuous-Time Convolution
(SPL'17) Antiderivative Antialiasing for Memoryless Nonlinearities

Hard Clipping Distortion w/ 1st-order ADAA

M U,Ild AL LA I,L 1

0 2500 5000 7500 10000 12500 15000 17500 20000
Frequency [Hz]


http://dafx16.vutbr.cz/dafxpapers/20-DAFx-16_paper_41-PN.pdf
https://acris.aalto.fi/ws/portalfiles/portal/27135145Antiderivative%20Antialiasing%20for%20Memoryless%20Nonlinearities

Ch1:Related Work/Intrinsic Problem of Neural Networks
Aliasing: Deep Learning

e Non-Linear Activation

e Oversampling Low-Pass Filter

(ICML'19)  Making Convolutional Networks Shift-Invariant Again Blur Kernel
(NeurlPS’21) Alias-Free Generative Adversarial Networks (StyleGAN3) Sinc Filter

- Latent |
A P| Fourier feat. | | L q L
e L
Conv 1x1
| v | Demod H Conv 3><? or 1x1 | L
Ls g Lo M
L : axPool
= N/ 2 Baseline :
Lo L (stride 2)
K Costord | Teamrarn | ||
N o Leaky ReLU
N ES ketne! L
— 6
. N : M BlurPool
20 > Lg 1 L H 3 ax Ur OO
= | Tcaem | P22 ! ) Anti-aliased , ,
= > Lo (stride 1) (stride 2)
[ Fixed N Lii L
[J Learned | [} 107 L
Affine 1 Li3 .
} 0 cupa - Max Pooling
20 L1

(b) Our alias-free StyleGAN3 generator architecture


https://arxiv.org/pdf/1904.11486.pdf
https://arxiv.org/pdf/2106.12423.pdf

Ch1:Related Work/Intrinsic Problem of Neural Networks

Chaos

e (ICLR’17) A Recurrent Neural Network without Chaos

When the input is absent, the trajectory of RNN states is not predictable

o
T

50 100

o 800 1600 0

(a) No input data (b) With input data


https://openreview.net/pdf?id=S1dIzvclg
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Chapter 2 - HyperGRU for Neural AFx Modeling

e Current Progress e The Palette e Future Work
o Model o Tone Creation o Advanced Model Design
o Dataset o Discussion o Benchmark
o Loss o Discussion
o Baselines
o Experiments
o Deployment
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Chapter 2 - HyperGRU for Neural AFx Modeling

e Current Progress e The Palette e Future Work
o Model o Tone Creation o Advanced Model Design
o Dataset o Discussion o Benchmark
o Loss o Discussion
o Baselines
o Experiments
o Deployment
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Model

e HyperNetwork

o Main Net
m Linear
m  GRU Cell

m FIR Filter: Latency Recognition
o Hyper Net: MLP

latency: 338
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Dataset

Dataset
training: 6.5 min
valiation: 1.5 min

(@)
(@)

AFX

(@)

@)

Analog
m  Amp Distortion (mono-mono)
m  Sound Image Modifier (stereo-stereo)
m Saturator (mono-mono)
Digital
m phaser/flanger

Sampling Rate

(@)
@)

48x2
96x2

/ Hardware M

o

/

Combinations=NxMx K x ....
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Loss

e Goal
o Waveforms are identical

o phase is considered

e STFT (Multi-Scale) Complex Spectrogram
o similiar with ICASSP’21 paper from meta

Loss Function. To train our model, we minimize the multi-scale
Short-Time Fourier Transform (STFT) loss [27], which has been
commonly used to replace point-wise losses on the raw waveforms.
Let L; define a single STFT complex spectrogram [; loss with a
given FFT size ¢. The total loss is then the sum of all the spectral
losses for the left and right channels Liow = 5., LI + 3, LT,
We use FFT sizes (2048, 1024, 512, 256), and the neighboring
frames in the STFT overlap by 75%.



https://alexanderrichard.github.io/publications/pdf/richard_implicit_hrtf.pdf
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Baselines
e Model
o WaveNet [1, 2, 3] [Concatenation]
o RNN[3] [Concatenation]
o  micro-TCN [4] [FIiLM]
o hyper-conditioned IIR [5] [HyperNetworks]

(@)

hyperGRU (proposed) [HyperNetworks]

e Loss

o O O

Temporal domain losses [1, 2, 3, 4]
STFT-magnitude [6]

Hybrid [4]

STFT-complex (proposed) [7]
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Baselines

[1] (SMC’19) Real-Time Modeling of Audio Distortion Circuits with Deep Learning

[2] (Icassp’19) Deep Learning for Tube Amplifier Emulation

[3] (Dafx’19) Real-Time Black-Box Modelling With Recurrent Neural Networks

[4] (Aes’22) Efficient Neural Networks for Real-Time Modeling of Analog Dynamic Range Compression

[5] (Icassp’21) Lightweight and interpretable neural modeling of an audio distortion effect using hyperconditioned
differentiable biquads

[6] (ICLR’20) DDSP

[7] (ICLR’21)  Neural Synthesis of Binaural Speech from Mono Audio


https://acris.aalto.fi/ws/portalfiles/portal/34352788/ELEC_Damskagg_Real_time_modeling_SMC2019.pdf
https://arxiv.org/pdf/1811.00334.pdf
http://dafx.de/paper-archive/2019/DAFx2019_paper_43.pdf
http://www.eecs.qmul.ac.uk/~josh/documents/2022/Steinmetz%20AES152.pdf
https://arxiv.org/pdf/2103.08709.pdf
https://arxiv.org/pdf/2103.08709.pdf
https://openreview.net/pdf?id=uAX8q61EVRu

Ch2:HyperGRU for Neural AFx Modeling/Current Progress
Source. Run on Eigen C++

Table 2: Error-to-signal ratio and processing speed for the

Expe rme ntS Wavenet and proposed LSTM models of the Big Muff pedal. The
best results are highlighted.

: . Model Hidden Layers Numberof ESR Time(s)/s

e Oberservation 1: RNN > TCN e Bovmurfoss pro il
o  Quality WaveNet 16 10 24065 | 11% 0.53
o  Model size WaveNet 8 18 11265 | 9.9% 0.63
WaveNet 16 18 43265 | 9.2% 0.91
o Efficiency (on CPU, Eigen C++) LSTM 32 1 4513 | 10% 0.12
LSTM 48 1 9841 | 6.1% 0.18
LSTM 64 1 17217 | 4.1% 0.24

Source. Run on Libtorch

Model K N d C P Rf. RT (CPU/GPU) MAE| STFT| LUFS|
TCN-324-N[20] 15 10 2 32 |162k| 324 ms 0.5x/17.1x 1.70e-2  0.587 0.520
TCN-100-N 5 4 10 32 |26k| 10lms 4.2x/37.1x 1.58e-2  0.768 1,155
TCN-300-N 13 4 10 32 |51k| 302ms 1.8x/37.3x 7.66e-3  0.600 0.602
TCN-1000-N 5 5 10 32 |33k | 1008 ms 0.5x /26.4x 1.20e-1  0.736 0.934
TCN-100-C 5 4 10 32 |26k| 10lms 5.0x/37.2x 1.92e-2  0.770 1,225
TCN-300-C 13 4 10 32 |51k| 302ms 2.2x/37.3x 1.44e-2  0.603 0.761
TCN-1000-C 5 5 10 32 |33k | 1008 ms 0.6x /26.4x 1.17e-1  0.692 0.899
LSTM-32 - - - - 5k - 0.9x /2.8x 1.10e-1 | 0.551 0.361



http://dafx.de/paper-archive/2019/DAFx2019_paper_43.pdf
http://www.eecs.qmul.ac.uk/~josh/documents/2022/Steinmetz%20AES152.pdf
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Experiments

e Oberservation 1: RNN > TCN

e The Efficiency largely depends on the platform and C++ framework
o To achieve similar quality:
o parameters amount: TCN >> RNN
o speedon GPU: TCN > RNN
o speed on CPU: (different framework)
m libtorch TCN > RNN
m Eigen TCN <RNN

e In deployment, we care quality, model size and speed on CPU
o RNN>TCN
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Experiments

TCN vs HyperRNN

mn-12_emb-16

ten-300

tcn-300_10s
ten-300_hybrid-loss
tcn-300_10s_hybrid-loss

e Oberservation 1: RNN > TCN
o On our dataset

10—1 -
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0 50000 100000 150000 200000 250000 300000 350000 400000
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Experiments

e QOberservation 2: HyperGRU > Concatenation GRU

o Quality

NTI Validation Loss

—— crnné
—— hyperCrnn6

WIA__A |

LV L VN | SV W T

'\A
| VO S W\JﬁL\f\u

N
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Experiments

e QOberservation 2: HyperGRU > Concatenation GRU
o Efficiency

[ Concatenation ] [ HyperNetwork ]
: output
output ; T
! N
. | Linear ‘-~ GRU
GRU | — o ,
I E condition input

condition | input
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Experiments: DC Bias 1 p DCOfset
e Reason 0
o silence (zero) input 1
o Concatenation GRU
o Condition is non-zero
output
I
e Cold Start Issue @
o The steady hidden state of RNN is variable S EIRLE
o Pop sound when open the plugin I

condition | input

3 5

non-zero zZero
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Experiments: DC Bias

o (ICLR'21) Neural Synthesis of Binaural Speech from Mono Audio

Inspired by the DSP formulation, we predict the convolutional weights for the input ;.7 of a layer
and the bias as functions of the conditioning input ¢;.7,

K
ze = [HW(erd)], w1+ HO (ero). (6)
k=1
e Model Design

o HyperNetworks
o Model Bias = False


https://openreview.net/pdf?id=uAX8q61EVRu
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Experiments: Aliasing

40000

30000

Hz

20000

10000

Even self reconstruction has this problem: tanh, sigmoid
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Experiments: Aliasing

e Solution: Oversampling
e (Interspeech’20) Real Time Speech Enhancement in the \Waveform Domain

Finally, we noticed that upsampling the audio by
a factor U before feeding it to the encoder improves accuracy.


https://arxiv.org/pdf/2006.12847.pdf
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Experiments: Training

e Truncated BPTT
o Buffer by buffer

e Passing Hidden State Across Buffer

o faster convergence

o higher quality
. Policy of hidden state:
e Zero or random Initialization
. e Pass

hidden
@
Py
C
hidden
@
Py
C

hidden
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Deployment
e (C++ Framework
o JUCE
o Eigen C++ output
!
_ Linear GRU
e HyperNetwork Update Policy -
o No chagne in condition: fixed I
o Changed _
m interpolation input

e RTF=0.2-0.3 (stereo) on CPU
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Deployment

e Difficulty in Dataset Construction
o Combinations

e Hybrid Method

Input Gain Amplifier Tone Stack Cabinet Output Gain

Scalar HyperGRU Circuit Analysis Impulse Response Scalar

Signal

Flow
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Chapter 2 - HyperGRU for Neural AFx Modeling

e Current Progress e The Palette e Future Work
o Model o Tone Creation o Advanced Model Design
o Dataset o Discussion o Benchmark
o Loss o Discussion
o Baselines
o Experiments
o Deployment
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Tone Creation

e Tone Creation / Fushion
e Crate an embedding for tones

output

!

input
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Tone Creation

e Inspired by these works

o (arXiv.2010) Randomized Overdrive Neural Networks
o (NeurlPS’21) Steerable Discovery of Neural Audio Effects (ML4CD Workshop)

[ Training ] [ Inference }

zeron vector arbitrary value

, Cq Xa , Cyp x

b

¢ Block (0] l ! (@0 ] l

Convld '
(Linear }-»{~i -x; + 8: | (1x1] 96(Xa,€a) o 90 (%p, )

PReLU

. '

: e It 5

a) b) c)

Figure 1: a) TCN block with 1D convolution, conditional affine transformation (FiLM), followed by
a PReLU nonlinearity. b) Steering process where gy (X,, €, ), a conditional TCN, is trained to emulate
f(x4), an existing audio effect, using a single input/output pair of recordings X,,y,. ¢) Generation
process where X, a new signal, is processed with the TCN and differing conditioning parameters c;.


https://arxiv.org/pdf/2010.04237.pdf
https://arxiv.org/pdf/2112.02926.pdf
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Tone Creation

=15

-20

|

N

wv
dBFS LUFS
Teo (sec)

-30

-35

a) Dynamic range compressor b) Artificial reverberation

Figure 2: Parameter space ¢ € R? from —5 to 5 with relation to a) loudness dB LUFS for a model
steered with a signal from a dynamic range compressor, and b) 75, for a model steered with a signal
from an artificial reverberation effect, both of which demonstrate clear structure.
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Discussion

e VAE-like embedding might not be necessary
o no distrubution?

o 2D plane output
m interpolation !
m extrapolation
e Tone Creation I
o more tones input

o embedding projection
o GAN
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Chapter 2 - HyperGRU for Neural AFx Modeling

e Current Progress e The Palette e Future Work
o Model o Tone Creation o Advanced Model Design
o Dataset o Discussion o Benchmark
o Loss o Discussion
o Baselines
o Experiments
o Deployment
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Advanced Model Design

e DC Bias
o post-silence
o runtime
e Aliasing
Unsolved
1 Fixed ‘ Unsilved
¥ ]
0
N
-1

Runtime DC Bias

Colorization

Aliasing

MIDI Learn Zero Latency

input: sine wave@1k

Default Setting

er. Pre+Post

T 100% 0.0dB
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Advanced Model Design

e Possible Reason:

o (ICLR'17) A Recurrent Neural Network without Chaos

e Solution?
o RNN-Decay

Source:
(NeurlPS’19) Latent ODEs for Irregularly-Sampled Time Series

lStandard RNN

— i

Time

Figure 1: Hidden state trajectories. Ver-
tical lines show observation times. Lines
show different dimensions of the hidden
state. Standard RNNs have constant or
undefined hidden states between observa-
tions. The RNN-Decay model has states
which exponentially decay towards zero,
and are updated at observations. States
of Neural ODE follow a complex trajec-
tory but are determined by the initial state.
The ODE-RNN model has states which
obey an ODE between observations, and
are also updated at observations.


https://openreview.net/pdf?id=S1dIzvclg
https://proceedings.neurips.cc/paper/2019/file/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf
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Advanced Model Design

e RNN-Decay

o (NeurlPS’'19) Latent ODEs for Irregularly-Sampled Time Series

observations are made [Che et al., 2018, Cao et al., 2018, Rajkomar et al., 2018, Mozer et al., 2017]:
h'i = RNNCCH(h,L_l . exp{—TAt}, xz) (2)
where 7 is a decay rate parameter. However, Mozer et al. [2017] found that empirically, exponential-

output

GRU Detector

1

condition input


https://proceedings.neurips.cc/paper/2019/file/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf
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Advanced Model Design

e Transient Modeling
o (ISMIR19) Deep Unsupervised Drum Transcription
o Onset-enhanced loss

L o re—
p—closed HH
(e OREN T,

Figure 3: The effect of drum extraction for kick, snare,
close hi-hat, and open hi-hat, from top to bottom. Columns
are from left to right: original waveform, original spec-
trum, and onset-enhanced spectrum

e
e

GE
¥



https://arxiv.org/abs/1906.03697

Ch2:HyperGRU for Neural AFx Modeling/Future Work

Benchmark

e Dataset

e {TCN, RNN, IIR} x {Concatenation, FiLM, HyperNework}
e Integrated with DDSP components

e |osses
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Discussion

e Sampling Rate Agnostic
o Input of HyperNet is sampling rate

e HyperNet:

MLP/CNN/RNN?
Doppler Effect?
Few/zero shot learning?
ADAA?

O O O O

e Chapter 4: Future Work



Future Work

Chapter Il
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Chapter 3 - Future Work

e Technology e Future of Creation
o Intelligent Music Production
o Digitization
o Sound Field Reconstruction
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Intelligent Music Production

Materials

Image
Image
Image
Image
. C h a n n e I Strl p Scene Parameters Rendering Output
. Optimization using a Differentiable Renderer
e Al Guitar Tone

Lights

Near Future

Geometry

Objective
Function

Render

®

Scene
Parameters

Vision

Common Self-Supervision Pipeline with Differentiable Rendering

e Al Mixing/Mastering/Creation
o Similiar Concept in Computer Vision: Differentiable Rendering (arxiv.2006)



https://arxiv.org/pdf/2006.12057.pdf

Ch4:Future Work/Technology/Intelligent Music Production

Channel Strip

e Coloring e Al Channel Strip
o product: The Cat o every part is differentiable
o product: The Palette
o product: British Kolorizer
e EQ
o prototype: maag
o prototype: Flickenger
e Dynamic
o None (research required)



https://www.master-tones.com/product/the-cat/
https://www.master-tones.com/product/the-palette/
https://www.master-tones.com/product/british-kolorizer/

Ch4:Future Work/Technology/Intelligent Music Production

Al Guitar Tone

e Pedal e Al Guitar Tone
o prototype: DS1 o every part is differentiable
o prototype: Digital Phaser/Flanger o amp/pedal palette

e Amplifier

o product: British Kolorizer
o prototype: 5150

e Cabinet
o IR



https://www.master-tones.com/product/british-kolorizer/
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Digitization
Key: Sampling Rate Agnostic / Runtime Sampling

e Implicit Neural Represenation
e Continuous Domain Deep Learning
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Implicit Neural Represenation

e (NeurlPS’20) SIREN: Implicit Neural Representations with Periodic Activation Functions
(ECCV’20) NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
(CVPR’21) Learning Continuous Image Representation with Local Implicit Image Function

Original: Image[x, y] = [R, G, B]
Implicit Neural Reprentation: Image(x, y) = [R, G, B]

Zooming in on Continuous Images

We generate LIIF representation for a given input image. On a continuous representation with infinite resolution, we can zoom in on the
image while maintaining high fidelity. We compare LIIF with the raw pixels and bilinear interpolation in the following.

Input (360px) Pixels Bilinear resize LIIF (ours)



https://arxiv.org/pdf/2006.09661.pdf
https://www.matthewtancik.com/nerf
https://yinboc.github.io/liif/
https://yinboc.github.io/liif/
https://yinboc.github.io/liif/
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Implicit Neural Represenation

e Computer Vision: Applications

o Super Resolution
o Novel View Synthesis

e Audio?
o Sound Field Reconstruction
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Continuous Domain Deep Learning

e CNN

o (ICLR’22) CKConv: Continuous Kernel Convolution For Sequential Data

e RNN / Neural ODE

o Uneven sampled time series: AT
o (Dafx’22) Virtual Analog Modeling of Distortion Circuits Using Neural Ordinary Differential Equations
O



https://arxiv.org/pdf/2102.02611.pdf
https://arxiv.org/pdf/2205.01897.pdf
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Sound Field Reconstruction

e /henvu Tang

o (Interspeech’21) IR-GAN: Room impulse response generator for far-field speech recognition
o (IEEEVR’21) Learning Acoustic Scattering Fields for Dynamic Interactive Sound Propagation
o (arXiv.2204) GWA: A Large High-Quality Acoustic Dataset for Audio Processing

Figure 1: Our IR data generation pipeline starts from a 3D model of a complex scene and its visual material annotations (u
structured texts). We sample multiple collision-free source and receiver locations in the scene. We use a novel scheme to aut
matically assign acoustic material parameters by semantic matching from a large acoustic database. Our hybrid acoustic sir
ulator generates accurate impulse responses (IRs), which become part of the large synthetic IR dataset after post-processin;

source: 3D-FRONT Dataset

Frequency (Hz)

3D Scene Mesh Models Visual Material Annotations Automatic Semantic RS5
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— Geometric
—Pp\coustlc Matenaj Hybrid
__ Database —-100
1T ———— ) Measured
Object: Table Acoustic Material [—————— S
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|_ IR Dataset n —-120
I — [ =
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Crossover )
. CAE M"_de"P : Filtering g
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Hybrid Acoustic Simulation
3 Energy
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= = s IRs ~160
102 103

(a) RS5: simple diffraction with infinite edge.


https://scholar.google.com/citations?user=gPGVGTkAAAAJ&hl=en
https://www.isca-speech.org/archive/pdfs/interspeech_2021/ratnarajah21_interspeech.pdf
https://arxiv.org/pdf/2010.04865.pdf
https://arxiv.org/pdf/2204.01787.pdf
https://tianchi.aliyun.com/specials/promotion/alibaba-3d-scene-dataset
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Sound Field Reconstruction

(arXiv.2202) Deep Impulse Responses: Estimating and Parameterizing Filters with Deep Networks

(arXiv.2204) Learning Neural Acoustic Fields

% ”1
(b) (©
(d) (e) ()

Figure 1. Neural Acoustic Field (NAF) learns an implicit repre-
sentation for acoustic propagation. (a) A 3D top-down view of
the house with two rooms. (b) Floor of the rooms shown in grey.
(¢)-(f) The loudness of acoustic field as predicted by our NAF
is visualized for an emitter located at the red dot. Notice how
sound does not leak through walls, and the portaling effect open
doorways can have. Louder regions are shown in yellow.



https://arxiv.org/pdf/2202.03416.pdf
https://arxiv.org/pdf/2204.00628.pdf
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Sound Field Reconstruction

e Given a 3D object (indoor scene), recreate the sound field

o reverb plugin
m bestin the industry: altiverb

o wayverb
e \What if the 3D model is also generated by Al

o (CVPR’21) House-GAN++: Generative Adversarial Layout Refinement Networks

Live Demo

s (cvpR 2021) A ronese
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https://www.audioease.com/altiverb/
https://reuk.github.io/wayverb/
https://openaccess.thecvf.com/content/CVPR2021/papers/Nauata_House-GAN_Generative_Adversarial_Layout_Refinement_Network_towards_Intelligent_Computational_Agent_CVPR_2021_paper.pdf
https://ennauata.github.io/houseganpp/page.html

Ch4:Future Work/Technology/Future of Creation

Future of Creation

e Observation

o O O O O

From 2D to 3D
From Digital to Analog
High Quality
Focus on “Concepts”
Immersive Experience

m  Dolby ATMOS

m  Ambisonic
Knowing, then can creation

blender’

https://www.blender.org/



https://www.blender.org/

Ch4:Future Work/Technology/Future of Creation

Future of Creation

o POC
o Virtual room
o Genre
o Sound field
o Music
m  AFx

m materials
o Interactive web



https://twitter.com/jsdc_tw?lang=zh-Hant

Thank you



